UNIVERSAL 4-BIT SHIFT REGISTER

The SN54/74LS195A is a high speed 4-Bit Shift Register offering typical shift frequencies of 39 MHz . It is useful for a wide variety of register and counting applications. It utilizes the Schottky diode clamped process to achieve high speeds and is fully compatible with all Motorola TTL products.

- Typical Shift Right Frequency of 39 MHz
- Asynchronous Master Reset
- J, K Inputs to First Stage
- Fully Synchronous Serial or Parallel Data Transfers
- Input Clamp Diodes Limit High Speed Termination Effects

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

PIN NAMES

$\overline{P E}$
$P_{0}-P_{3}$
$\frac{J}{K}$
$\frac{C P}{M R}$
$Q_{0}-Q_{3}$
Q_{3}

Parallel Enable (Active LOW) Input
Parallel Data Inputs
First Stage J (Active HIGH) Input
First Stage K (Active LOW) Input
Clock (Active HIGH Going Edge) Input
Master Reset (Active LOW) Input
Parallel Outputs (Note b)
Complementary Last Stage Output (Note b)

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
10 U.L.	5 (2.5) U.L.
10 U.L.	5 (2.5) U.L.

NOTES:

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/1.6 mA LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

SN54/74LS195A

UNIVERSAL 4-BIT

 SHIFT REGISTERLOW POWER SCHOTTKY

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The Logic Diagram and Truth Table indicate the functional characteristics of the LS195A 4-Bit Shift Register. The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial to parallel, or parallel to serial data transfers at very high speeds.
The LS195A has two primary modes of operation, shift right $\left(Q_{0} \rightarrow Q_{1}\right)$ and parallelload which are controlled by the state of the Parallel Enable (PE) input. When the PE input is HIGH, serial data enters the first flip-flop Q_{0} via the J and K inputs and is shifted one bit in the direction $Q_{0} \rightarrow Q_{1} \rightarrow Q_{2} \rightarrow Q_{3}$ following each LOW to HIGH clock transition. The JK inputs provide the flexibility of the JK type input for special applications, and the simple D type input for general applications by tying the two
pins together. When the PE input is LOW, the LS195A appears as four common clocked D flip-flops. The data on the parallel inputs $P_{0}, P_{1}, P_{2}, P_{3}$ is transferred to the respective Q_{0}, Q_{1}, $\mathrm{Q}_{2}, \mathrm{Q}_{3}$ outputs following the LOW to HIGH clock transition. Shift left operations $\left(Q_{3} \rightarrow Q_{2}\right)$ can be achieved by tying the Q_{n} Outputs to the $\mathrm{P}_{\mathrm{n}-1}$ inputs and holding the PE input LOW.

All serial and parallel data transfers are synchronous, occurring after each LOW to HIGH clock transition. Since the LS195A utilizes edge-triggering, there is no restriction on the activity of the $\mathrm{J}, \mathrm{K}, \mathrm{P}_{\mathrm{n}}$ and PE inputs for logic operation except for the set-up and release time requirements.
A LOW on the asynchronous Master Reset (MR) input sets all Q outputs LOW, independent of any other input condition.

MODE SELECT - TRUTH TABLE

OPERATING MODES	INPUTS					OUTPUTS				
	MR	PE	J	K	$\mathbf{P}_{\mathbf{n}}$	$\mathbf{Q}_{\mathbf{0}}$	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$	$\mathbf{Q}_{\mathbf{3}}$
Asynchronous Reset	L	X	X	X	X	L	L	L	L	H
Shift, Set First Stage	H	h	h	h	X	H	q_{0}	q_{1}	q_{2}	q_{2}
Shift, Reset First	H	h	l	l	X	L	q_{0}	q_{1}	q_{2}	q_{2}
Shift, Toggle First Stage	H	h	h	l	X	q_{0}	q_{0}	q_{1}	q_{2}	q_{2}
Shift, Retain First Stage	H	h	I	h	X	q_{0}	q_{0}	q_{1}	q_{2}	q_{2}
Parallel Load	H	I	X	X	p_{n}	p_{0}	p_{1}	p_{2}	p_{3}	p_{3}

L = LOW voltage levels
$\mathrm{H}=\mathrm{HIGH}$ voltage levels
X = Don't Care
I = LOW voltage level one set-up time prior to the LOW to HIGH clock transition.
$\mathrm{h}=$ HIGH voltage level one set-up time prior to the LOW to HIGH clock transition.
$p_{n}\left(q_{n}\right)=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW to HIGH clock transition.

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
$V_{\text {CC }}$	Supply Voltage	54	4.5	5.0	5.5	V
		74	4.75	5.0	5.25	
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
IOH	Output Current - High	54,74			-0.4	mA
IOL	Output Current - Low	54			4.0	mA
		74			8.0	

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions	
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed I All Inputs	HIGH Voltage for
VIL	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for All Inputs	
		74			0.8			
V_{IK}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}$	$-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54	2.5	3.5		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table	
		74	2.7	3.5		V		
VOL	Output LOW Voltage	54, 74		0.25	0.4	V	$\mathrm{IOL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \text { per Truth Table } \end{aligned}$
		74		0.35	0.5	V	$\mathrm{OL}=8.0 \mathrm{~mA}$	
${ }^{1 / \mathrm{H}}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}$	$=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}$	$=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.4	mA	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}$	$=0.4 \mathrm{~V}$
Ios	Short Circuit Current (Note 1)		-20		-100	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	
ICC	Power Supply Current				21	mA	$\mathrm{V}_{\mathrm{CC}}=$ MAX	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
fmax	Maximum Clock Frequency	30	39		MHz	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Clock to Output		$\begin{aligned} & 14 \\ & 17 \end{aligned}$	$\begin{aligned} & 22 \\ & 26 \end{aligned}$	ns	
tPHL	Propagation Delay, MR to Output		19	30	ns	

AC SETUP REQUIREMENTS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter		Limits		Unit	Test Conditions
		Min	Typ	Max		
tw	CP Clock Pulse Width	16			ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
tw	MR Pulse Width	12			ns	
$\mathrm{t}_{\text {s }}$	PE Setup Time	25			ns	
$\mathrm{t}_{\text {s }}$	Data Setup Time	15			ns	
trec	Recovery Time	25			ns	
trel	PE Release Time			10	ns	
th	Data Hold Time	0			ns	

SN54/74LS195A

DEFINITIONS OF TERMS

SETUP TIME $\left(\mathrm{t}_{\mathrm{s}}\right)$-is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.

HOLD TIME (t_{h}) - is defined as the minimum time following the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued
recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.

RECOVERY TIME (trec) - is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW to HIGH in order to recognize and transfer HIGH Data to the Q outputs.

AC WAVEFORMS

The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 1. Clock to Output Delays and Clock Pulse Width

Figure 2. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time

Figure 3. Setup ($\mathrm{t}_{\mathbf{s}}$) and Hold (t_{h}) Time for Serial Data ($\mathrm{J} \& \mathrm{~K}$) and Parallel Data ($\mathrm{P} 0, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$)

CONDITIONS: $\overline{\mathrm{MR}}=\mathrm{H}$

$$
{ }^{*} Q_{0} \text { STATE WILL BE DETERMINED BY J AND K K INPUTS . }
$$

Figure 4. Setup ($\mathrm{t}_{\mathbf{s}}$) and Hold (t_{h}) Time for PE Input

