

Data sheet acquired from Harris Semiconductor SCHS065C – Revised November 2004

CMOS Dual Monostable Multivibrator

High-Voltage Types (20-Volt Rating)

CD4098B dual monostable multivibrator provides stable retriggerable/resettable one-shot operation for any fixed-voltage timing application.

An external resistor $(R\chi)$ and an external capacitor $(C\chi)$ control the timing for the circuit. Adjustment of R_X and C_X provides a wide range of output pulse widths from the Q and \overline{Q} terminals. The time delay from trigger input to output transition (trigger propagation delay) and the time delay from reset input to output transition (reset propagation delay) are independent of Rx and Cχ.

Leading-edge-triggering (+TR) and trailingedge-triggering (-TR) inputs are provided for triggering from either edge of an input pulse. An unused +TR input should be tied to VSS. An unused -TR input should be tied to VDD. A RESET (on low level) is provided for immediate termination of the output pulse or to prevent output pulses when power is turned on. An unused RESET input should be tied to VDD. However, if an entire section of the CD4098B is not used, its RESET should be tied to VSS. See Table I.

In normal operation the circuit triggers (extends the output pulse one period) on the application of each new trigger pulse. For operation in the non-retriggerable mode, $\overline{\mathbf{Q}}$ is connected to -TR when leading-edge triggering (+TR) is used or Q is connected to +TR when trailing-edge triggering (-TR) is used.

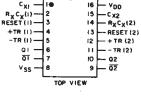
The time period (T) for this multivibrator can be approximated by: $T_X = \frac{1}{2}R_X C_X$ for $C_X \ge$ 0.01 µF. Time periods as a function of Rx for values of C_X and V_{DD} are given in Fig. 8. Values of T vary from unit to unit and as a function of voltage, temperature, and RXCX.

The minimum value of external resistance, R_X , is 5 k Ω . The maximum value of external capacitance, C χ , is 100 μ F. Fig. 9 shows time periods as a function of C_X for values of R_X and VDD.

The output pulse width has variations of ±2.5% typically, over the temperature range of $-55^{\circ}C$ to $125^{\circ}C$ for Cx=1000 pF and $R_X = 100 k\Omega$.

For power supply variations of ±5%, the output pulse width has variations of ±0.5% typically, for V_{DD}=10 V and 15 V and ±1% typically, for VDD=5 V at Cx=1000 pF and $R_{X}=5 k\Omega$.

These types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix). 16-lead small-outline packages (M, M96, and MT suffixes), and 16-lead thin shrink smalloutline packages (PW and PWR suffixes).


The CD4098B is similar to type MC14528.

Features:

- Retriggerable/resettable capability
- Trigger and reset propagation delays independent of R_X , C_X
- Triggering from leading or trailing edge
- Q and Q buffered outputs available
- Separate resets
- Wide range of output-pulse widths
- 100% tested for maximum quiescent current at 20 V
- Maximum input current of 1 µA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range): 1 V at V_{DD} = 5 V 2 V at V_{DD} =10 V 2.5 V at V_{DD} =15 V 5.V, 10-V, and 15-V parametric ratings
- Standardized, symmetrical output characteristics
- Meets all requirements of JEDEC Tentative Standard No. 13B,"Standard Specifications for Description of 'B' Series CMOS Devices."

Applications:

- Pulse delay and timing
- Pulse shaping
- Astable multivibrator

TERMINALS 1,8,15 ARE ELECTRICALLY CONNECTED INTERNALLY 92CS-2484881

TERMINAL ASSIGNMENT

MAXIMUM RATINGS, Absolute-Maximum Values:
DC SUPPLY-VOLTAGE RANGE, (VDD)
Voltages referenced to V _{SS} Terminal)
INPUT VOLTAGE RANGE, ALL INPUTS
DC INPUT CURRENT, ANY ONE INPUT
POWER DISSIPATION PER PACKAGE (PD):
For $T_A = -55^{\circ}C$ to $+100^{\circ}C$
For $T_A = \pm 100^{\circ}$ C to $\pm 125^{\circ}$ C Derate Linearity at 12 mW/ $^{\circ}$ C to 200 mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)
OPERATING-TEMPERATURE RANGE (T _A)
STORAGE TEMPERATURE RANGE (Tstg)
LEAD TEMPERATURE (DURING SOLDĚRING):
At distance 1/16 \pm 1/32 inch (1.59 \pm 0.79mm) from case for 10s max

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	V _{DD}	LIN	IITS	
CHARACTERISTIC	V	MIN	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range)	-	3	18	· v
Trigger Pulse Width t _W (TR)	5 10 15	140 60 40		กร
Reset Pulse Width $t_W(R)$ (This is a function of C_X)		Si Dynami Chart Fig,	t and	·
Trigger Rise or Fall Time t _r (TR), t _f (TR)	5 - 15	_	100	μs

CD4098B Types

5 -TR

+ TR

ESET

- TR -----

V00=16

Vss * 6

13

[■]×1

RXCX(I)

MONO

MONO2

Cx2

CD4098R

Functional Diagram

Vop

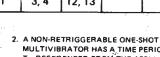
Q1

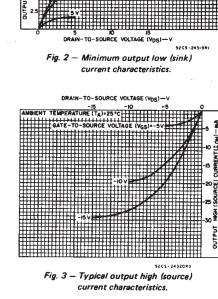
92

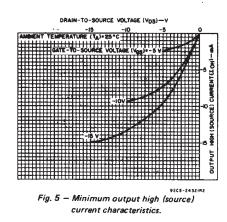
- 02

X2 92C5-24253

			TABLE	Ē					AMBIENT TEMPERATURE (TA)+25 °C
CD	4098B FL	INCTION	AL TER	MINAL	ONNEC	TIONS			
FUNCTION	V _{DD} TO TERM. NO.		V _{SS} TO TERM. NO.		INPUT PULSE TO TERM. NO.			HER CTIONS	GATE-TO-SOURCE VOLTAGE (VQS
	MONO	MONO2	MONO1	MONO2	MONO	MONO2	MONO	MONO2	
Leading-Edge Trigger/ Retriggerable	3, 5	11, 13			4	_12			
Leading-Edge Trigger/ Non-retriggerable	3	13		1	4	12	5-7	11-9	0 5 0 15 DRAIN-TO-SOURCE VOLTAGE (VDS)-V
Trailing-Edge Trigger/ Retriggerable	3	13	4	12	5	11			Fig. 1 — Typical output low (current characteristic
Trailing-Edge Trigger/ Non-retriggerable	3	13	-		5	11	4-6	12.10	
Unused Section	5	11	3, 4	12, 13				<u>├</u> ──┥	

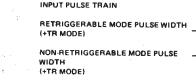

1. A RETRIGGERABLE ONE-SHOT MULTI-VIBRATOR HAS AN OUTPUT PULSE WIDTH WHICH IS EXTENDED ONE FULL TIME PERIOD (TX) AFTER APPLICATION OF THE LAST TRIGGER PULSE. The minimum time between retriggering edges (or trigger and retrigger edges) is 40 per cent of (T_X) .


MULTIVIBRATOR HAS A TIME PERIOD T_X REFERENCED FROM THE APPLI-CATION OF THE FIRST TRIGGER PULSE.


INPUT PULSE TRAIN

-Ty

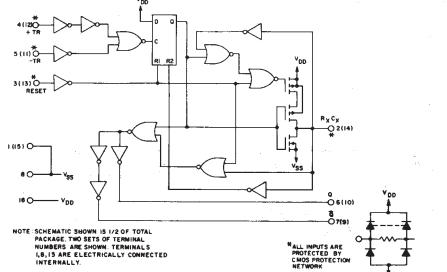
൝

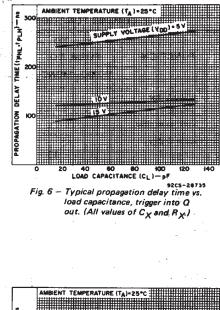


Copyright © 2004, Texas Instruments Incorporated

3 COMMERCIAL CMOS HIGH VOLTAGE ICS

9205-243(88)




Fig. 4 - CD40988 logic diagram.

3-227

92CM - 27628RI

STATIC ELECTRICAL CHARACTERISTICS

CHARAC- TERISTIC		DITIO		LIMI	LIMITS AT INDICATED TEMPERATURES (°C)								
	Vo	VIN	V _{DD}						+25	+25			
· ·	(V)	(V)	-(V)	55	_40	+85	+125	Min.	Typ.	Max.	1.94		
Quiescent		0,5	5	1	1	30	30	_	0.02	1			
Device		0,10	10	2	2	60	60	- 1	0.02	2	1.		
Current		0,15	15	4	4	120	120	- 1	0.02	4	μΑ		
IDD Max.	-	0,20	20	20	20	600	600	-	0.04	20			
Output Low						:		<u> </u>					
(Sink)	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	_			
Current,	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	-			
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	<u> </u>	(_ +		
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	† <u>-1</u>	-	mA		
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	-			
Current,	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-			
OH Min.	13.5	0,15	15	-4.2	_4	-2.8	-2.4	-3.4	-6.8	-			
Output Volt-				:			L	1		11			
age:		0,5	5		0.0)5		_	0	0.05			
Low-Level,	-	0,10	10		0.0)5		<u> </u>	0	0.05	f		
VOL Max.	-	0,15	15		0.0)5		-	0	0.05			
Output Volt-					· · · · · · · · · · · · · · · · · · ·	·····		<u> </u>		 	V		
age:		0,5	5	· · · ·	4.9	5		4.95	5	<u>·</u>	·		
High-Level,	_	0,10	10		9.9			9.95	10				
V _{OH} Min.	_	0,15	15		14.	_		14.95	15				
Input Low	0.5,4.5	_	5		1.1	5				1.5			
Voltage,	1,9	_	10		3				_	3			
V _{IL} Max.	1.5,13.5	-	15		4				_	4			
Input High	0.5,4.5		5	· .	3.5	5		3.5	_		V		
Voltage,	1,9	-	10		7	_		7					
V _{IH} Min.	1.5,13.5	с —	15		11			11	_	_			
Input Current, I _{IN} Max.	-	0,18	18	±0.1	±0.1	±1	±1	_	±10 ⁻⁵	±0.1	μA		

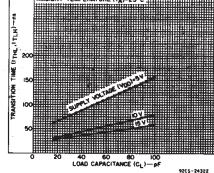


Fig. 7 – Transition time vs. load capacitance for $R_X = 5 \ k\Omega \cdot 10000 \ k\Omega$ and $C_X = 15 \ pF \cdot 10000 \ pF$.

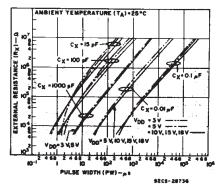


Fig. 8 – Typical external resistance vs. pulse width.

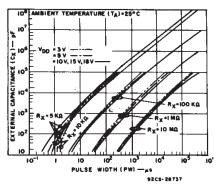


Fig. 9 – Typical external capacitance vs. pulse width.

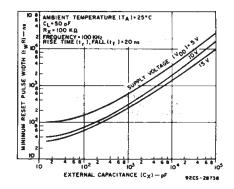


Fig. 10 – Typical minimum reset pulse width vs. external capacitance.

, ·

DYNAMIC ELECTRICAL CHARACTERISTICS

At $T_A = 25^{\circ}C$; Input $t_r, t_f = 20 \text{ ns}$, $C_L = 50 \text{ pF}$, $R_L = 200 \text{ k}\Omega$

CHARACTERISTIC	TEST	CONDITI	LIM	LIAUTO				
CHARACTERISTIC	$\mathbf{R}_{\mathbf{X}}(\mathbf{k}\Omega)$	C _X (pF)	VDD (V)	Тур.	Max.	UNITS		
Trigger Propagation Delay Time	5 to		5	250	500			
+TR, –TR to Q, Q	10,000	≥15	10	125	250	ns		
tPHL, tPLH	10,000		15	100	200			
Minimum Trigger Pulse Width,	5 to		5	70	140			
trave trave	10,000	≥15	10	30	60	ns		
tWH, tWL	10,000		15	20	40			
Transition Time,	5 to		- 5	100	200			
^t TLH	10,000	≥15	10	50	100			
	10,000		15	40	80			
	5 to	15 to	5	100	200			
	10,000	10,000	10	50	100			
			15	40	80			
	5 to	0.01 μF	5	150	300	ns		
^t THL	10,000	to	10	75	150			
		0.1 μF	15	65	130			
	5 to	0.1 μF	5	250	500			
	10,000	to	10	150	300			
		1 μF	15	80	160			
Reset Propagation Delay Time,	5 to	1	5	225	450	1		
ΤΡΗΙ, ΤΡΙΗ	10,000	≥15	10	125	250	ns		
		·	15	75	150			
			5	100	200	ns		
		15	10	40	80			
			15	30	60			
Minimum Reset Pulse Width,	100	1000	5	600	1200			
twR	100	1000	10	300	600			
	1		15	250	500			
		0.1.5	5	25	50			
		0.1 μF	10	15	30	μs		
Trigger Rise or Fall Time	+	<u> </u>	15	10	20			
	-		5 to		100	μs		
t _r (TR), t _f (TR)	· · · · · · · · · · · · · · · · · · ·	See at 1	15		1999 - Carlos - Carlo			
Pulse Width Match		3	5	5	10			
Between Circuits in	10	10,000	10	7.5	15	%		
Same Package		<u> </u>	15	7.5	15	<u> </u>		
Input Capacitance, C _{IN}		Any Input		5	7.5	рF		

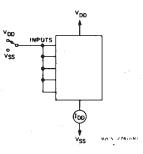
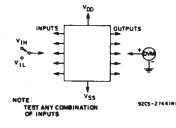



Fig. 12 - Quiescent-device-current test circuits.

3

COMMERCIAL CMOS HIGH VOLTAGE ICs

Fig. 13 - Input-voltage test circuit.

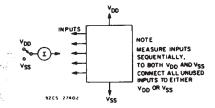


Fig. 14 — Input leakage current test circuit.

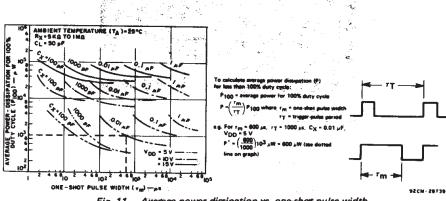
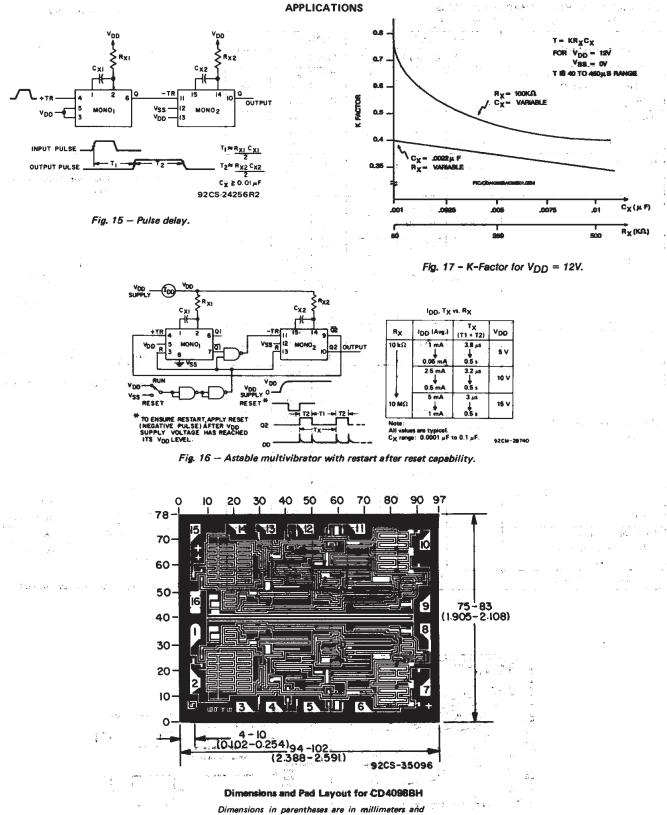



Fig. 11 - Average power dissipation vs. one-shot pulse width.

CD4098B Types

are derived from the basic inch dimensions as indicated. Grid graduations are in mils (†9⁻⁺³ inch).

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
CD4098BE	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD4098BE	Samples
CD4098BEE4	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD4098BE	Samples
CD4098BF	ACTIVE	CDIP	J	16	1	Non-RoHS & Non-Green	SNPB	N / A for Pkg Type	-55 to 125	CD4098BF	Samples
CD4098BF3A	ACTIVE	CDIP	J	16	1	Non-RoHS & Non-Green	SNPB	N / A for Pkg Type	-55 to 125	CD4098BF3A	Samples
CD4098BM	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4098BM	Samples
CD4098BM96	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4098BM	Samples
CD4098BM96G4	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4098BM	Samples
CD4098BMT	ACTIVE	SOIC	D	16	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4098BM	Samples
CD4098BPW	ACTIVE	TSSOP	PW	16	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM098B	Samples
CD4098BPWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM098B	Samples
JM38510/17504BEA	ACTIVE	CDIP	J	16	1	Non-RoHS & Non-Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 17504BEA	Samples
M38510/17504BEA	ACTIVE	CDIP	J	16	1	Non-RoHS & Non-Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 17504BEA	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

www.ti.com

10-Dec-2020

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

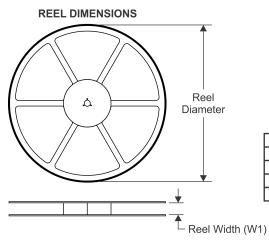
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

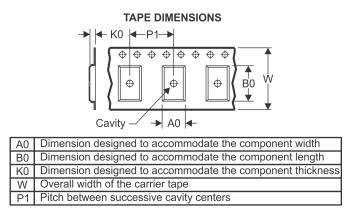
OTHER QUALIFIED VERSIONS OF CD4098B, CD4098B-MIL :

Catalog: CD4098B

Military: CD4098B-MIL

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

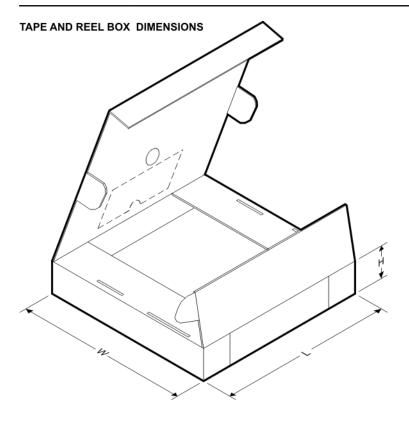

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD4098BM96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD4098BPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

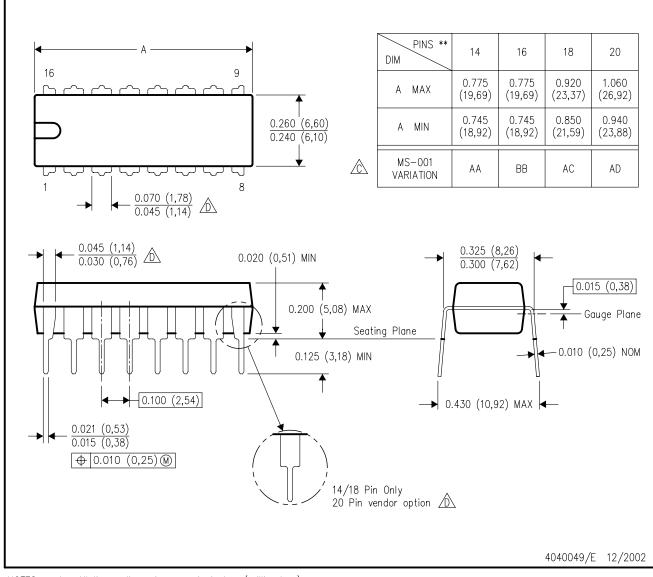
16-Oct-2020

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD4098BM96	SOIC	D	16	2500	333.2	345.9	28.6
CD4098BPWR	TSSOP	PW	16	2000	853.0	449.0	35.0

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

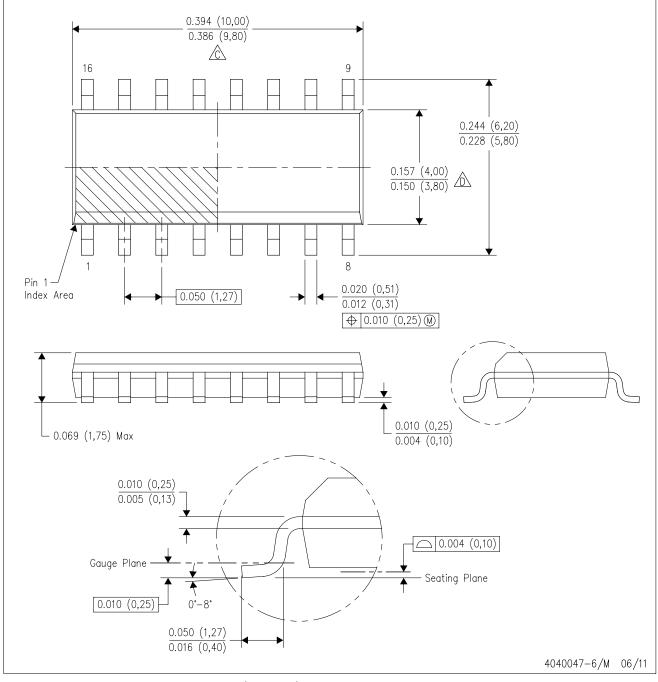

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

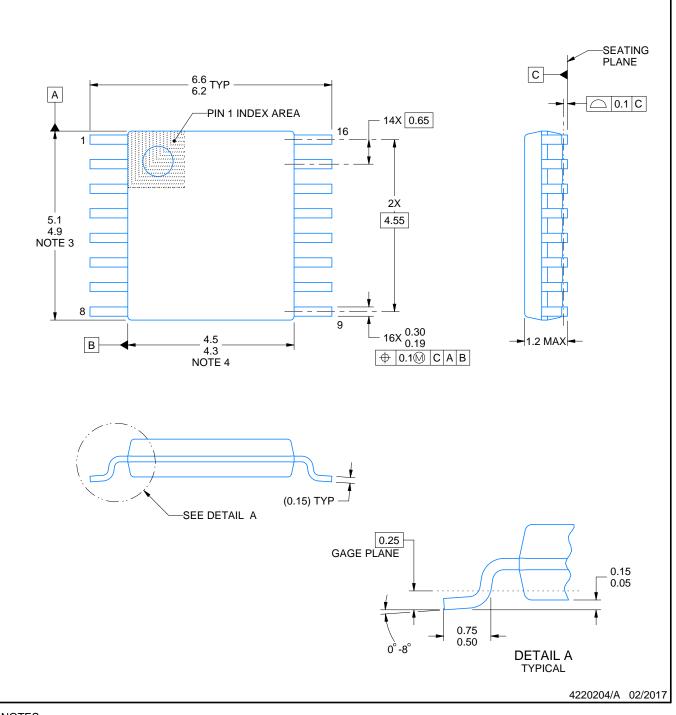
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


PW0016A

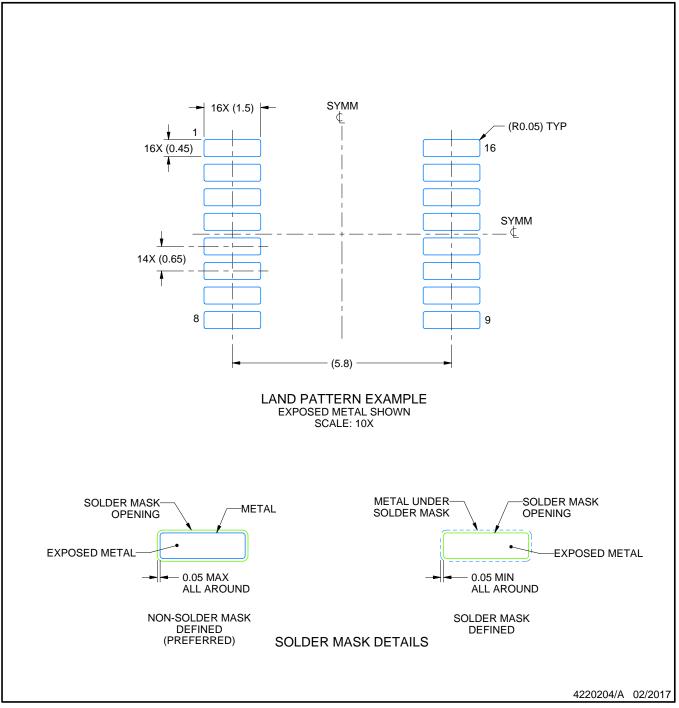
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0016A

EXAMPLE BOARD LAYOUT

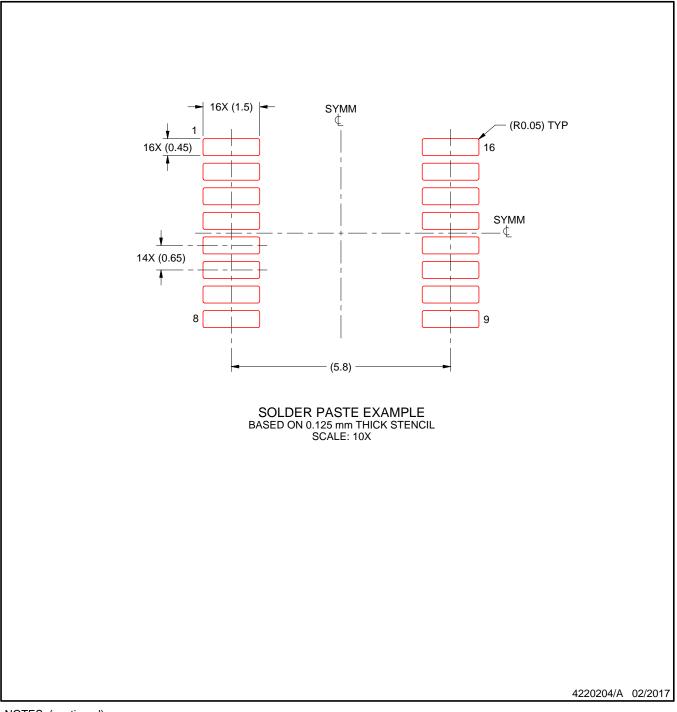
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0016A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated